Sunday, June 24, 2018

What is Modified Atmosphere Packaging (MAP) and why is it so popular?


Brief Introduction

Modified atmosphere packaging (MAP) is a popular way of extending the shelf life of fresh food or non-food products – meat, fruits, vegetables and precise instrument . The MAP process is basically the process if vacuuming the package first, then fill in mixed gas, usually inert gas (nitrogen, co2, etc) at a certain propotion. The mixed gas filled in the package helps ensure that the product will stay fresh for as long as possible, and protect the products by preventing them from direct outer pressure.

Working Theory

The mixture of gases selected to be filled into a MAP package mainly depends on the type of product, the packaging materials and the storage temperature. The atmosphere in an MAP package consists mainly of specified propotion of N2, O2, and CO2 . Reduction of O2 promotes delay in deteriorative reactions in foods such as lipid oxidation, browning reactions and growth of spoilage organisms. Low O2 levels of 3-5% is used to slow down respiration rate in fruits and vegetables. In the case of red meat, however, high levels of O2 (∼80%) are used to reduce oxidation of myoglobin and maintain an attractive bright red color of the meat. Meat color enhancement is not required to pork, poultry and cooked meats, therefore, a higher concentration of CO2 is used to extend the shelf life. Levels higher than 10% of CO2 are phytotoxic for fruit and vegetables, so CO2 is maintained below this level. N2 is mostly used as a filler gas to prevent pack collapse. In addition, it is also used to prevent oxidative rancidity in packaged products such as snack foods by displacing atmospheric air, especially oxygen, therefore extending shelf life. The use of noble gases such as Helium (He), Argon (Ar) and Xenon (Xe) to replace N2 as the balancing gas in MAP can also be used to preserve and extend the shelf life of fresh and minimally processed fruits and vegetables. Their beneficial effects are due to their higher solubility and diffusivity in water making them more effective in displacing Ofrom cellular sites and enzymatic O2 receptors.
There has been a debate regarding the use of carbon monoxide (CO) in the packaging of red meat due to its possible toxic effect to packaging workers. Its use however results to a more stable red color of carboxymyoglobin in meat which leads to another concern that it can mask evidence of spoilage in the product.

Packaging materials

Flexible films are commonly used for products such as fresh produce, meats, fish and bread seeing as they provide suitable permeability for gases and water vapor to reach the desired atmosphere. Pre-formed trays are formed and sent to the food packaging facility where they are filled. The package headspace then undergoes modification and sealing. Pre-formed trays are usually more flexible and allow for a broader range of sizes as opposed to thermoformed packaging materials as different tray sizes and colors can be handled without the risk of damaging the package. Thermoformed packaging however is received in the food packaging facility as a roll of sheets. Each sheet is subjected to heat and pressure, and is formed at the packaging station. Following the forming, the package is filled with the product, and then sealed. The advantages that thermoformed packaging materials have over pre-formed trays are mainly cost-related: thermoformed packaging uses 30% to 50% less material, and they are transported as rolls of material. This will amount in significant reduction of manufacturing and transportation costs.
When selecting packaging films for MAP of fruits and vegetables the main characteristics to consider are gas permeability, water vapour transmission rate, mechanical properties, transparency, type of package and sealing reliability. Traditionally used packaging films like LDPE (low-density polyethylene), PVC (polyvinyl chloride), EVA (ethylene-vinyl acetate) and OPP (oriented polypropylene) are not permeable enough for highly respiring products like fresh-cut produce, mushrooms and broccoli. As fruits and vegetables are respiring products, there is a need to transmit gases through the film. Films designed with these properties are called permeable films. Other films, called barrier films, are designed to prevent the exchange of gases and are mainly used with non-respiring products like meat and fish.
MAP films developed to control the humidity level as well as the gas composition in the sealed package are beneficial for the prolonged storage of fresh fruits, vegetables and herbs that are sensitive to moisture. These films are commonly referred to as modified atmosphere/modified humidity packaging (MA/MH)films.

Equipment for MAP packing

In using form-fill-seal packaging machines, the main function is to place the product in a flexible pouch suitable for the desired characteristics of the final product. These pouches can either be pre-formed or thermoformed. The food is introduced into the pouch, the composition of the headspace atmosphere is changed within the package; it is then heat sealed. These types of machines are typically called pillow-wrap, which horizontally or vertically form, fill and seal the product. Form-fill-seal packaging machines are usually used for large scale operations.
In contrast, chamber machines are used for batch processes. A filled pre-formed wrap is filled with the product and introduced into a cavity. The cavity is closed and vacuum is then pulled on the chamber and the modified atmosphere is inserted as desired. Sealing of the package is done through heated sealing bars, and the product is then removed. This batch process is labor intensive and thus requires a longer period of time; however, it is relatively cheaper than packaging machines which are automated.
Additionally, snorkel machines are used to modify the atmosphere within a package after the food has been filled. The product is placed in the packaging material and positioned into the machine without the need of a chamber. A nozzle, which is the snorkel, is then inserted into the packaging material. It pulls a vacuum and then flushes the modified atmosphere into the package. The nozzle is removed and the package is heat sealed. This method is suitable for bulk and large operations.

No comments:

Post a Comment